The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).
View Article and Find Full Text PDFJ Mol Graph Model
March 2025
Computational techniques have been used to analyze the molecules of 10-hydroxycoronahydine (HC) and voacangine hydroxyindolenine (VH) molecules with the aim of studying the effect of base and temperature on their interaction mechanisms during synthesis green magnetite nanoparticles. Density functional theory (DFT) descriptors such as: energy gap, overall reactivity descriptors, dipole moment and adsorption energy have all been explored in depth to understand the nature of the interaction. The DFT results showed that the molecules studied (HC and VH) are interactive and stable in an aqueous medium, due to the fact that these molecules have free electronic doublets on the nitrogen atom and the bond of the aromatic ring.
View Article and Find Full Text PDFUnderstanding the principle of the bacteria-anode surface interaction can enhance electron transfer in microbial fuel cells and aid in antibiofouling. In this article, we investigate the adsorption propensity of common adhesins [-acetylglucosamine (NAG), d-glucose, and alginate] found in microbial biofilms on the surface of unmodified and modified graphite through density functional theory and molecular dynamics simulations. DFT results showed that all the molecules could interact with the graphite surface, with NAG (Δ = 3.
View Article and Find Full Text PDFJ Phys Chem A
November 2024
The widespread proliferation of water hyacinth () in aquatic ecosystems has raised significant ecological, environmental, and socioeconomic concerns globally. These concerns include reduced biodiversity, impeded water transportation and recreational activities, damage to marine infrastructure, and obstructions in power generation dams and irrigation systems. This review critically evaluates the challenges posed by water hyacinth (WH) and investigates potential strategies for converting its biomass into value-added agricultural products, specifically nanonutrients-fortified, biochar-based, green fertilizer.
View Article and Find Full Text PDF