We present a computational model of networked neurons developed to study the effect of temperature on neuronal synchronization in the brain in association with seizures. The network consists of a set of chaotic bursting neurons surrounding a core tonic neuron in a square lattice with periodic boundary conditions. Each neuron is reciprocally coupled to its four nearest neighbors via temperature dependent gap junctions.
View Article and Find Full Text PDFRecurrence microstates are obtained from the cross recurrence of two sequences of values embedded in a time series, being the generalization of the concept of recurrence of a given state in phase space. The probability of occurrence of each microstate constitutes a recurrence quantifier. The set of probabilities of all microstates are capable of detecting even small changes in the data pattern.
View Article and Find Full Text PDFSemiconductor lasers with optical feedback are well-known nonlinear dynamical systems. Under appropriate feedback conditions, these lasers emit optical pulses that resemble neural spikes. Influenced by feedback delay and various noise sources, including quantum spontaneous emission noise, the dynamics are highly stochastic.
View Article and Find Full Text PDFSince the COVID-19 pandemic was first reported in 2019, it has rapidly spread around the world. Many countries implemented several measures to try to control the virus spreading. The healthcare system and consequently the general quality of life population in the cities have all been significantly impacted by the Coronavirus pandemic.
View Article and Find Full Text PDFThis article investigates the emergence of phase synchronization in a network of randomly connected neurons by chemical synapses. The study uses the classic Hodgkin-Huxley model to simulate the neuronal dynamics under the action of a train of Poissonian spikes. In such a scenario, we observed the emergence of irregular spikes for a specific range of conductances and also that the phase synchronization of the neurons is reached when the external current is strong enough to induce spiking activity but without overcoming the coupling current.
View Article and Find Full Text PDF