Publications by authors named "E E Minyat"

Viral maturation of HIV-1 involves refolding of its genomic RNA, which is believed to include a rearrangement of the SL1 stem-loop from a metastable conformation called kissing loop dimer (KD) to a stable one termed extended dimer (ED). To investigate this rearrangement in vitro we have studied the thermal melting of the RNA dimers formed by slightly modified 23-nucleotide SL1 RNA of HIV-1 Mal. Local structural changes in the RNA dimers during the melting were monitored by changes in the fluorescence of 2-aminopurine (2AP) incorporated in predetermined positions of RNA.

View Article and Find Full Text PDF

The fluorescent 2-aminopurine probe (2-AP) incorporated into the loop of 23-mer RNA hairpin of HIV-1 genome dimerization initiation site (DIS) was used for discrimination of specific and unspecific binding of paromomycin and spermine to the kissing loop dimer (KD) formed in solution. While both ligands stabilized the KD RNA structure, only paromomycin binding resulted in significant increase of 2-AP fluorescence. These observations suggest that the 2-AP fluorescent RNA construct might be useful for selecting ligands specifically binding the HIV-1 kissing loop RNA dimer.

View Article and Find Full Text PDF

Protein synthesis in ribosomes requires two kinds of tRNAs: initiation and elongation. The former initiates the process (formylmethionine tRNA in prokaryotes and special methionine tRNA in eukaryotes). The latter participates in the synthesis proper, recognizing the sense codons.

View Article and Find Full Text PDF

The RNA secondary structure is not confined to a system of the hairpins and can contain pseudoknots as well as topologically equivalent slipped-loop structure (SLS) conformations. A specific primary structure that directs folding to the pseudoknot or SLS is called SL-palindrome (SLP). Using a computer program for searching the SLP in the genomic sequences, 419 primary structures of large ribosomal RNAs from different kingdoms (prokaryota, eukaryota, archaebacteria) as well as plastids and mitochondria were analyzed.

View Article and Find Full Text PDF

We report a high-resolution NMR structure of a homodimer formed by a synthetic 25 residue DNA oligonucleotide GCTCCCATGGTTTTTGTGCACGAGC. This structure presents a novel structural motif for single-stranded nucleic acids, called a pseudosquare knot (PSQ). The oligonucleotide was originally designed to mimic a slipped-loop structure (SLS), another "unusual" DNA structure postulated as an alternative conformation for short direct repeats in double-stranded DNA.

View Article and Find Full Text PDF