Prenatal organophosphate (OP) pesticide exposure may be associated with reduced fetal growth, although studies are limited and have mixed results. We investigated associations between prenatal OP pesticide exposure and fetal size and modification by fetal sex. Maternal urinary concentrations of dialkyl phosphate (DAP) metabolites were measured at three time points.
View Article and Find Full Text PDFOrganophosphate esters (OPEs) are a class of chemicals now widely used as flame retardants and plasticizers after the phase-out of polybrominated diphenyl ethers (PBDEs). However, OPEs carry their own risk of developmental toxicity, which poses concern for recent birth cohorts as they have become ubiquitous in the environment. In this review, we summarize the literature evaluating the association between OPE exposure and maternal, perinatal, and child health outcomes.
View Article and Find Full Text PDFUpon DNA replication stress, cells utilize the postreplication repair pathway to repair single-stranded DNA and maintain genome integrity. Postreplication repair is divided into 2 branches: error-prone translesion synthesis, signaled by proliferating cell nuclear antigen (PCNA) monoubiquitination, and error-free template switching, signaled by PCNA polyubiquitination. In Saccharomyces cerevisiae, Rad5 is involved in both branches of repair during DNA replication stress.
View Article and Find Full Text PDFPregnancy is increasingly considered a period of vulnerability for extreme heat exposure. Multiple lines of evidence support that heat stress is associated with placental insufficiency, poor fetal growth and decreased birth weight. In this narrative review, we first summarize evidence linking ambient temperature or experimentally-induced heat stress with fetal and placental growth outcomes in humans, ruminants and murine species.
View Article and Find Full Text PDFPurpose Of Review: Despite increasing awareness of the ubiquity of microplastics (MPs) in our environments, little is known about their risk of developmental toxicity. Even less is known about the environmental distribution and associated toxicity of nanoplastics (NPs). Here, we review the current literature on the capacity for MPs and NPs to be transported across the placental barrier and the potential to exert toxicity on the developing fetus.
View Article and Find Full Text PDF