Introduction: The routine collection of patient-reported outcome measures (PROMs) promises to improve patient care. However, in colorectal surgery, PROMs are uncommonly collected outside of clinical research studies and rarely used in clinical care. We designed and implemented a quality improvement project with the goals of routinely collecting PROMs and increasing the frequency that PROMs are utilized by colorectal surgeons in clinical practice.
View Article and Find Full Text PDFDifferent types of memory are thought to rely on different types of synaptic plasticity, many of which depend on the activation of the N-Methyl-D Aspartate (NMDA) subtype of glutamate receptors. Accordingly, there is considerable interest in the possibility of using positive allosteric modulators (PAMs) of NMDA receptors (NMDARs) as cognitive enhancers. Here we firstly review the evidence that NMDA receptor-dependent forms of synaptic plasticity: short-term potentiation (STP), long-term potentiation (LTP) and long-term depression (LTD) can be pharmacologically differentiated by using NMDAR ligands.
View Article and Find Full Text PDFN-methyl-d-aspartate (NMDA) receptors (NMDARs) are a subtype of ionotropic glutamate receptor with important roles in CNS function. Since excessive NMDAR activity can lead to neuronal cell death and epilepsy, there is interest in developing NMDAR negative allosteric modulators (NAMs) as neuroprotective agents. In this study, we characterize the inhibitory properties of a novel NMDAR antagonist, UBP792.
View Article and Find Full Text PDFThe N-methyl-D-aspartate receptor (NMDAR), a ligand-gated ion channel activated by L-glutamate and glycine, plays a major role in the synaptic plasticity underlying learning and memory. NMDARs are involved in neurodegenerative disorders such as Alzheimer's and Parkinson's disease and NMDAR hypofunction is implicated in schizophrenia. Herein we describe structure-activity relationship (SAR) studies on 2-naphthoic acid derivatives to investigate structural requirements for positive and negative allosteric modulation of NMDARs.
View Article and Find Full Text PDF