Publications by authors named "E Dufourcq-Sekatcheff"

Environmental pollution associated with long term effects, especially in the case of ionizing radiation, poses significant risks to wildlife, necessitating a more nuanced approach to Ecological Risk Assessment (ERA). In radioecology, current methods, as outlined by the International Commission on Radiological Protection (ICRP), focus primarily on exposure and individual/population-level effects, often both suffering a lack of ecological realism due to the nature of data used, and, sidelining a big amount of critical non-individual effects such as sub-individual one like genotoxicity. This review aims to address these gaps by suggesting the integration of New Approach Methods (NAMs) and the Adverse Outcome Pathway (AOP) framework in the field of radioecology.

View Article and Find Full Text PDF

Background: Adaptation to a stressor can lead to costs on other traits. These costs play an unavoidable role on fitness and influence the evolutionary trajectory of a population. Host defense seems highly subject to these costs, possibly because its maintenance is energetically costly but essential to the survival.

View Article and Find Full Text PDF

Although ecotoxicological and toxicological risk assessments are performed separately from each other, recent efforts have been made in both disciplines to reduce animal testing and develop predictive approaches instead, for example, via conserved molecular markers, and in vitro and in silico approaches. Among them, adverse outcome pathways (AOPs) have been proposed to facilitate the prediction of molecular toxic effects at larger biological scales. Thus, more toxicological data are used to inform on ecotoxicological risks and vice versa.

View Article and Find Full Text PDF

Wildlife is subject to various sources of pollution, including ionizing radiation. Adverse effects can impact the survival, growth, or reproduction of organisms, later affecting population dynamics. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint.

View Article and Find Full Text PDF

Ionizing radiation can reduce survival, reproduction and affect development, and lead to the extinction of populations if their evolutionary response is insufficient. However, demographic and evolutionary studies on the effects of ionizing radiation are still scarce. Using an experimental evolution approach, we analyzed population growth rate and associated change in life history traits across generations in Caenorhabditis elegans populations exposed to 0, 1.

View Article and Find Full Text PDF