Exciton-polaritons, hybrid light-matter excitations arising from the strong coupling between excitons in semiconductors and photons in photonic nanostructures, are crucial for exploring the physics of quantum fluids of light and developing all-optical devices. Achieving room temperature propagation of polaritons with a large excitonic fraction is challenging but vital, e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2023
Photoelectrochemical cells (PEC) are appealing devices for the production of renewable energy carriers. In this context, III-V semiconductors such as GaAs are very promising materials due to their tunable band gaps, which can be appropriately adjusted for sunlight harvesting. Because of the high cost of these semiconductors, the nanostructuring of the photoactive layer can help to improve the device efficiency as well as drastically reduce the amount of material needed.
View Article and Find Full Text PDFBackground: Quantifying gait using inertial measurement units has gained increasing interest in recent years. Highly degraded gaits, especially in neurological impaired patients, challenge gait detection algorithms and require specific segmentation and analysis tools. Thus, the outcomes of these devices must be rigorously tested for both robustness and relevancy in order to recommend their routine use.
View Article and Find Full Text PDFFriedrich-Wintgen (FW) interference is an atypical coupling mechanism that grants loss exchange between leaky resonances in non-Hermitian classical and quantum systems. Intriguingly, such a mechanism makes destructive interference possible for scenarios in which a radiating wave becomes a bound state in the continuum (BIC) by giving away all of its losses. Here we propose and demonstrate experimentally an original concept to tailor FW-BICs with polarization singularity at on-demand wavevectors in an optical metasurface.
View Article and Find Full Text PDF