J Chem Theory Comput
July 2024
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the probability distribution of the off-diagonal elements of a Wishart matrix, we develop a consistent and unbiased estimator for the Seebeck coefficient, whose statistical uncertainty can be arbitrarily reduced in the long-time limit. We assess the efficacy of our method by benchmarking it against extensive equilibrium molecular dynamics simulations conducted on molten CsF using empirical force fields.
View Article and Find Full Text PDFWe present a method, based on the classical Green-Kubo theory of linear response, to compute the heat conductivity of extended systems, leveraging energy-density, rather than energy-current, fluctuations, thus avoiding the need to devise an analytical expression for the macroscopic energy flux. The implementation of this method requires the evaluation of the long-wavelength and low-frequency limits of a suitably defined correlation function, which we perform using a combination of recently-introduced cepstral-analysis and Bayesian extrapolation techniques. Our methodology is demonstrated against standard current-based Green-Kubo results for liquid argon and water, and solid amorphous Silica, and compared with a recently proposed similar technique, which utilizes mass-density, instead of energy-density, fluctuations.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2023
The application of a temperature gradient to an extended system generates an electromotive force that induces an electric current in conductors and macroscopic polarization in insulators. The ratio of the electromotive force to the temperature difference, usually referred to as the Seebeck coefficient, is often computed using nonequilibrium techniques, such as nonequilibrium molecular dynamics (NEMD). In this article, we argue that thermo-polarization effects in insulating fluids can be conveniently treated by standard equilibrium thermodynamics and devise a protocol─based on a combination of equilibrium molecular dynamics and Bayesian inference methods─that allows one to compute the Seebeck coefficient in these systems along with a rigorous estimate of the resulting statistical accuracy.
View Article and Find Full Text PDFRock glaciers are the most prominent permafrost-related mountain landforms. This study investigates the effects of the discharge from an intact rock glacier on the hydrological, thermal and chemical dynamics of a high-elevation stream in the NW Italian Alps. Despite draining only 39 % of the watershed area, the rock glacier sourced a disproportionately large amount of discharge to the stream, with the highest relative contribution to the catchment streamflow occurring in late summer - early autumn (up to 63 %).
View Article and Find Full Text PDFThe study of radiosensitivity and radioresistance of organisms exposed to ionizing radiation has acquired additional relevance since a new bio-concept, coined as The primacy of Proteome over Genome, was proposed and demonstrated elsewhere a few years ago. According to that finding, genome integrity would require an actively functioning Proteome. However, when exposure to radiation takes place, Reactive Oxygen Species (ROS) from water radiolysis induce protein carbonylation (PC), an irreversible oxidative Proteome damage.
View Article and Find Full Text PDF