The default mode network (DMN) is a widely distributed, intrinsic brain network thought to play a crucial role in internally directed cognition. The present study employs stereo-EEG in 13 human patients, obtaining high resolution neural recordings across multiple canonical DMN regions during two processes that have been associated with creative thinking: spontaneous and divergent thought. We probe these two DMN-associated higher cognitive functions through mind wandering and alternate uses tasks, respectively.
View Article and Find Full Text PDFBackground: Deep brain stimulation (DBS) and other neuromodulatory techniques are being increasingly utilized to treat refractory neurologic and psychiatric disorders.
Objective: /Hypothesis: To better understand the circuit-level pathophysiology of treatment-resistant depression (TRD) and treat the network-level dysfunction inherent to this challenging disorder, we adopted an approach of inpatient intracranial monitoring borrowed from the epilepsy surgery field.
Methods: We implanted 3 patients with 4 DBS leads (bilateral pair in both the ventral capsule/ventral striatum and subcallosal cingulate) and 10 stereo-electroencephalography (sEEG) electrodes targeting depression-relevant network regions.
The default mode network (DMN) is a widely distributed, intrinsic brain network thought to play a crucial role in internally-directed cognition. It subserves self-referential thinking, recollection of the past, mind wandering, and creativity. Knowledge about the electrophysiology underlying DMN activity is scarce, due to the difficulty to simultaneously record from multiple distant cortical areas with commonly-used techniques.
View Article and Find Full Text PDF