Publications by authors named "E Delli Paoli"

Article Synopsis
  • DNA methylation in trees is sensitive to environmental changes and can impact how they respond to stress over time, but the long-term effects and response specificity are not well understood.
  • This study focused on a specific tree clone (Populus nigra cv. 'Italica') and examined its methylome changes when exposed to various stressors like cold, heat, drought, and disease in a controlled environment.
  • The findings indicated that multiple stresses can affect the same genomic regions, suggesting a common response mechanism, while also highlighting specific methylation changes related to drought that could influence gene functions.
View Article and Find Full Text PDF

Legionnaires' disease is a severe form of pneumonia caused by spp. bacteria. According to the European Centre for Disease Prevention and Control, problems related to this pathogen showed a significant surge in recent years, making its monitoring critical.

View Article and Find Full Text PDF

This review highlights -omics research in Solanaceae family, with a particular focus on resilient traits. Extensive research has enriched our understanding of Solanaceae genomics and genetics, with historical varietal development mainly focusing on disease resistance and cultivar improvement but shifting the emphasis towards unveiling resilience mechanisms in genebank-preserved germplasm is nowadays crucial. Collecting such information, might help researchers and breeders developing new experimental design, providing an overview of the state of the art of the most advanced approaches for the identification of the genetic elements laying behind resilience.

View Article and Find Full Text PDF

Animals must maintain physiological processes within an optimal temperature range despite changes in their environment. Through behavioral assays, whole-brain functional imaging, and neural ablations, we show that larval zebrafish, an ectothermic vertebrate, achieves thermoregulation through homeostatic navigation-non-directional and directional movements toward the temperature closest to its physiological setpoint. A brain-wide circuit encompassing several brain regions enables this behavior.

View Article and Find Full Text PDF