To identify new therapeutic targets that limit glioblastoma (GBM) invasion, we applied druggable-genome CRISPR screens to patient-derived GBM cells in micro-dissectible biomimetic 3D hydrogel platforms that permit separation and independent analysis of core vs. invasive fractions. We identified 12 targets whose suppression limited invasion, of which ACP1 (LMW-PTP) and Aurora Kinase B (AURKB) were validated in neurosphere assays.
View Article and Find Full Text PDFGlioblastomas (GBMs) are highly invasive brain tumors replete with brain- and blood-derived macrophages, collectively known as tumor-associated macrophages (TAMs). Targeting TAMs has been proposed as a therapeutic strategy but has thus far yielded limited clinical success in slowing GBM progression, due in part to an incomplete understanding of TAM function in GBM. Here, by using an engineered hyaluronic acid-based 3D invasion platform, patient-derived GBM cells, and multi-omics analysis of GBM tumor microenvironments, we show that M2-polarized macrophages stimulate GBM stem cell (GSC) mesenchymal transition and invasion.
View Article and Find Full Text PDFWhile the poor prognosis of glioblastoma arises from the invasion of a subset of tumor cells, little is known of the metabolic alterations within these cells that fuel invasion. We integrated spatially addressable hydrogel biomaterial platforms, patient site-directed biopsies, and multiomics analyses to define metabolic drivers of invasive glioblastoma cells. Metabolomics and lipidomics revealed elevations in the redox buffers cystathionine, hexosylceramides, and glucosyl ceramides in the invasive front of both hydrogel-cultured tumors and patient site-directed biopsies, with immunofluorescence indicating elevated reactive oxygen species (ROS) markers in invasive cells.
View Article and Find Full Text PDFWhile the poor prognosis of glioblastoma arises from the invasion of a subset of tumor cells, little is known of the metabolic alterations within these cells that fuel invasion. We integrated spatially addressable hydrogel biomaterial platforms, patient site-directed biopsies, and multi-omics analyses to define metabolic drivers of invasive glioblastoma cells. Metabolomics and lipidomics revealed elevations in the redox buffers cystathionine, hexosylceramides, and glucosyl ceramides in the invasive front of both hydrogel-cultured tumors and patient site-directed biopsies, with immunofluorescence indicating elevated reactive oxygen species (ROS) markers in invasive cells.
View Article and Find Full Text PDFBiophysical cues in the extracellular matrix (ECM) regulate cell behavior in a complex, nonlinear, and interdependent manner. To quantify these important regulatory relationships and gain a comprehensive understanding of mechanotransduction, there is a need for high-throughput matrix platforms that enable parallel culture and analysis of cells in various matrix conditions. Here we describe a multiwell hyaluronic acid (HA) platform in which cells are cultured on combinatorial arrays of hydrogels spanning a range of elasticities and adhesivities.
View Article and Find Full Text PDF