Publications by authors named "E De Bruyckere"

The transcription factor Bcl11b has been linked to neurodevelopmental and neuropsychiatric disorders associated with synaptic dysfunction. Bcl11b is highly expressed in dentate gyrus granule neurons and is required for the structural and functional integrity of mossy fiber-CA3 synapses. The underlying molecular mechanisms, however, remained unclear.

View Article and Find Full Text PDF

Autophagy provides nutrients during starvation and eliminates detrimental cellular components. However, accumulating evidence indicates that autophagy is not merely a housekeeping process. Here, by combining mouse models of neuron-specific ATG5 deficiency in either excitatory or inhibitory neurons with quantitative proteomics, high-content microscopy, and live-imaging approaches, we show that autophagy protein ATG5 functions in neurons to regulate cAMP-dependent protein kinase A (PKA)-mediated phosphorylation of a synapse-confined proteome.

View Article and Find Full Text PDF

Multiple aspects of neuronal physiology crucially depend on two cellular pathways, autophagy and endocytosis. During endocytosis, extracellular components either unbound or recognized by membrane-localized receptors (termed "cargo") become internalized into plasma membrane-derived vesicles. These can serve to either recycle the material back to the plasma membrane or send it for degradation to lysosomes.

View Article and Find Full Text PDF

Cleavage of amyloid precursor protein (APP) by BACE-1 (β-site APP cleaving enzyme 1) is the rate-limiting step in amyloid-β (Aβ) production and a neuropathological hallmark of Alzheimer's disease (AD). Despite decades of research, mechanisms of amyloidogenic APP processing remain highly controversial. Here, we show that in neurons, APP processing and Aβ production are controlled by the protein complex-2 (AP-2), an endocytic adaptor known to be required for APP endocytosis.

View Article and Find Full Text PDF

Neurons maintain axonal homeostasis via employing a unique organization of the microtubule (MT) cytoskeleton, which supports axonal morphology and provides tracks for intracellular transport. Abnormal MT-based trafficking hallmarks the pathology of neurodegenerative diseases, but the exact mechanism regulating MT dynamics in axons remains enigmatic. Here we report on a regulation of MT dynamics by AuTophaGy(ATG)-related proteins, which previously have been linked to the autophagy pathway.

View Article and Find Full Text PDF