Publications by authors named "E Darbon"

In most species, antibiotic production is triggered in a condition of phosphate limitation, a condition that is known to be correlated with a low intracellular ATP content compared to growth in a condition of phosphate proficiency. This observation suggests that a low ATP content might be a direct trigger of antibiotic biosynthesis. In order to test this hypothesis, we introduced into the model strain , a functional and a non-functional ATPase cloned into the replicative vector pOSV206 and expressed under the control of the strong ErmE* promoter.

View Article and Find Full Text PDF

Actinobacteria of the genus are important for antibiotic production and other valuable biotechnological applications such as bioconversion or bioremediation. Despite their importance, tools and methods for their genetic manipulation are less developed than in other actinobacteria such as . We report here the use of the pSAM2 site-specific recombination system to delete antibiotic resistance cassettes used in gene replacement experiments or to create large genomic deletions.

View Article and Find Full Text PDF

In , antibiotic biosynthesis is triggered in phosphate limitation that is usually correlated with energetic stress. Polyphosphates constitute an important reservoir of phosphate and energy and a better understanding of their role in the regulation of antibiotic biosynthesis is of crucial importance. We previously characterized a gene, , encoding a polyphosphate kinase, whose disruption greatly enhanced the weak antibiotic production of .

View Article and Find Full Text PDF

The 2,5-Diketopiperazines (DKPs) constitute a large family of natural products with important biological activities. Bicyclomycin is a clinically-relevant DKP antibiotic that is the first and only member in a class known to target the bacterial transcription termination factor Rho. It derives from cyclo-(L-isoleucyl-L-leucyl) and has an unusual and highly oxidized bicyclic structure that is formed by an ether bridge between the hydroxylated terminal carbon atom of the isoleucine lateral chain and the alpha carbon of the leucine in the diketopiperazine ring.

View Article and Find Full Text PDF

Cyclodipeptide synthases (CDPSs) constitute a family of peptide bond-forming enzymes that use aminoacyl-tRNAs for the synthesis of cyclodipeptides. Here, we describe the activity of 41 new CDPSs. We also show that CDPSs can be classified into two main phylogenetically distinct subfamilies characterized by specific functional subsequence signatures, named NYH and XYP.

View Article and Find Full Text PDF