Publications by authors named "E Dal Molin"

The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae.

View Article and Find Full Text PDF

Improved understanding of the complex interaction between plant metabolism, environmental conditions and the plant-associated microbiome requires an interdisciplinary approach: Our hypothesis in our multiomics study posited that several environmental and biotic factors have modulating effects on the microbiome and metabolome of the roots of wild plants. Furthermore, we postulated reciprocal interactions between the root metabolome and microbiome. We investigated the metabolic content, the genetic variability, and the prokaryotic microbiome in the root systems of wild plants at rosette and flowering stages across six distinct locations.

View Article and Find Full Text PDF

Marker-assisted selection (MAS) plays a crucial role in crop breeding improving the speed and precision of conventional breeding programmes by quickly and reliably identifying and selecting plants with desired traits. However, the efficacy of MAS depends on several prerequisites, with precise phenotyping being a key aspect of any plant breeding programme. Recent advancements in high-throughput remote phenotyping, facilitated by unmanned aerial vehicles coupled to machine learning, offer a non-destructive and efficient alternative to traditional, time-consuming, and labour-intensive methods.

View Article and Find Full Text PDF

An organism's observable traits, or phenotype, result from intricate interactions among genes, proteins, metabolites and the environment. External factors, such as associated microorganisms, along with biotic and abiotic stressors, can significantly impact this complex biological system, influencing processes like growth, development and productivity. A comprehensive analysis of the entire biological system and its interactions is thus crucial to identify key components that support adaptation to stressors and to discover biomarkers applicable in breeding programs or disease diagnostics.

View Article and Find Full Text PDF