Publications by authors named "E D Kolaczyk"

We demonstrate the use of gradient-boosted ensemble models that accurately predict emission wavelengths in benzobis[1,2-:4,5-']oxazole (BBO) based fluorescent emitters. We have curated a database of 50 molecules from previously published data by the Jeffries-EL group using density functional theory (DFT) computed ground and excited state features. We consider two machine learning (ML) models based on (i) whole cruciform molecules and (ii) their constituent fragment molecules.

View Article and Find Full Text PDF

In clinical neuroscience, epileptic seizures have been associated with the sudden emergence of coupled activity across the brain. The resulting functional networks-in which edges indicate strong enough coupling between brain regions-are consistent with the notion of percolation, which is a phenomenon in complex networks corresponding to the sudden emergence of a giant connected component. Traditionally, work has concentrated on noise-free percolation with a monotonic process of network growth, but real-world networks are more complex.

View Article and Find Full Text PDF

Aircraft emissions contribute to overall ambient air pollution, including ultrafine particle (UFP) concentrations. However, accurately ascertaining aviation contributions to UFP is challenging due to high spatiotemporal variability along with intermittent aviation emissions. The objective of this study was to evaluate the impact of arrival aircraft on particle number concentration (PNC), a proxy for UFP, across six study sites 3-17 km from a major arrival aircraft flight path into Boston Logan International Airport by utilizing real-time aircraft activity and meteorological data.

View Article and Find Full Text PDF

With more and more data being collected, modern network representations exploit the complementary nature of different data sources as well as similarities across patients. We here introduce the Variation of information fused Layers of Networks algorithm (ViLoN), a novel network-based approach for the integration of multiple molecular profiles. As a key innovation, it directly incorporates prior functional knowledge (KEGG, GO).

View Article and Find Full Text PDF

The reproductive number is an important metric that has been widely used to quantify the infectiousness of communicable diseases. The time-varying instantaneous reproductive number is useful for monitoring the real-time dynamics of a disease to inform policy making for disease control. Local estimation of this metric, for instance at a county or city level, allows for more targeted interventions to curb transmission.

View Article and Find Full Text PDF