Publications by authors named "E D Eanes"

Three categories of precursor cells have been identified in postnatal mammals: tissue-committed progenitor cells, germ layer lineage-committed stem cells and lineage-uncommitted pluripotent stem cells. Progenitor cells are the immediate precursors of differentiated tissues. Germ layer lineage stem cells can be induced to form multiple cell types belonging to their respective ectodermal, mesodermal, and endodermal embryological lineages.

View Article and Find Full Text PDF

The objectives of this study were to prepare hybrid and surface-modified amorphous calcium phosphates (ACPs) as fillers for mineral-releasing dental composites, and determine whether the mechanical strength of the composites could be improved without decreasing their remineralization potential. ACP was hybridized with tetraethoxysilane or zirconyl chloride and surface-treated with 3-methacryloxypropoxytrimethoxy silane (MPTMS) or zirconyl dimethacrylate (ZrDMA). Composites fabricated with unmodified ACP (u-ACP), hybrid or surface-modified ACP filler and photo-activated Bis-GMA, TEGDMA and 2-hydroxyethyl methacrylate (HEMA) (BTH resin), Bis-GMA, TEGDMA, HEMA and MPTMS (BTHS resin) or Bis-GMA, TEGDMA, HEMA and ZrDMA (BTHZ resin) were tested for their remineralizing potential and biaxial flexure strength (BFS).

View Article and Find Full Text PDF

Amorphous calcium phosphate (ACP), a postulated precursor in the formation of biological hydroxyapatite, has been evaluated as a filler phase in bioactive polymeric composites that utilize dental monomers to form the matrix phase on polymerization. In addition to excellent biocompatibility, these composites provided sustained release of calcium and phosphate ions into simulated saliva milieus. In an effort to enhance the physicochemical and mechanical properties and extend the utility of remineralizing ACP composites to a greater variety of dental applications, we have focused on: a) hybridizing ACP by introducing silica and/or zirconia, b) assessing the efficacy of potential coupling agents, c) investigating the effects of chemical structure and compositional variation of the resin matrices on the mechanical strength and ion-releasing properties of the composites, and d) improving the intrinsic adhesiveness of composites by using bifunctional monomers with an affinity for tooth structure in resin formulations.

View Article and Find Full Text PDF

The goal of this study was to determine the effect that silica and zirconia have on the stability of bioactive amorphous calcium phosphate (ACP) mineral, i.e., in retarding its transformation to hydroxyapatite (HAP).

View Article and Find Full Text PDF