Publications by authors named "E D Abercrombie"

Nuclei within the basal ganglia-such as the globus pallidus external segment, subthalamic nucleus, and substantia nigra pars reticulata-have been shown to exhibit synchronous bursting activity entrained to excessive cortical beta oscillations following dopamine depletion. Zolpidem binds to GABA receptors with selectivity for those expressing the α subunit, potentiating inhibitory postsynaptic currents and increasing the time decay of channel opening. Interestingly, zolpidem-sensitive nuclei within the basal ganglia circuitry are also those that have been shown to exhibit hyperexcitation in a dopamine-depleted state.

View Article and Find Full Text PDF

Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle.

View Article and Find Full Text PDF

Key Points: Neural synchrony between the subthalamic nucleus (STN) and cortex is critical for proper information processing in basal ganglia circuits. Using in vivo extracellular recordings in urethane-anaesthetized mice, we demonstrate that single units and local field potentials from the STN exhibit oscillatory entrainment to low-frequency (0.5-4 Hz) rhythms when the cortex is in a synchronized state.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that results in motor, cognitive and psychiatric abnormalities. Dysfunction in neuronal processing between the cortex and the basal ganglia is fundamental to the onset and progression of the HD phenotype. The corticosubthalamic hyperdirect pathway plays a crucial role in motor selection and blockade of neuronal activity in the subthalamic nucleus (STN) results in hyperkinetic movement abnormalities, similar to the motor symptoms associated with HD.

View Article and Find Full Text PDF

Huntington's disease (HD) is a genetic neurodegenerative disorder that is characterized by the progressive onset of cognitive, psychiatric, and motor symptoms. In parallel, the neuropathology of HD is characterized by progressive loss of projection neurons in cortex and striatum; striatal cholinergic interneurons are relatively spared. Nonetheless, there is evidence that striatal acetylcholine (ACh) function is altered in HD.

View Article and Find Full Text PDF