Publications by authors named "E Craiovan"

Introduction: Fungi are essential to the aquatic food web, nutrient cycling, energy flow, and ecosystem regulation. Fungal community structures in water can be influenced by adjacent terrestrial environments, which drive and control some ecosystem services they provide. However, the roles of freshwater fungal communities remain underexplored compared to bacterial communities in this context.

View Article and Find Full Text PDF

(ACB) complex has been identified as a group of emerging opportunistic pathogens that cause nosocomial infections. The current study investigates the prevalence, distribution, and diversity of pathogenic ACB complex in various aquatic systems with different uses. Of the total 157 agricultural, raw drinking water intake, recreational beach, and wastewater treatment plant (WWTP) effluent samples, acinetobacters were isolated, quantified, and confirmed by genus- and ACB complex-specific PCR assays.

View Article and Find Full Text PDF

Background: Water is considered a source for the transmission of Arcobacter species to both humans and animals. This study was conducted to assess the prevalence, distribution, and pathogenicity of A. butzleri strains, which can potentially pose health risks to humans and animals.

View Article and Find Full Text PDF

Background: The freshwater microbiome regulates aquatic ecological functionality, nutrient cycling, pathogenicity, and has the capacity to dissipate and regulate pollutants. Agricultural drainage ditches are ubiquitous in regions where field drainage is necessary for crop productivity, and as such, are first-line receptors of agricultural drainage and runoff. How bacterial communities in these systems respond to environmental and anthropogenic stressors are not well understood.

View Article and Find Full Text PDF

Background: Aliarcobacter faecis and Aliarcobacter lanthieri are recently identified as emerging human and animal pathogens. In this paper, we demonstrate the development and optimization of two direct DNA-based quantitative real-time PCR assays using species-specific oligonucleotide primer pairs derived from rpoB and gyrA genes for A. faecis and A.

View Article and Find Full Text PDF