BACKGROUNDIndividuals recovering from COVID-19 frequently experience persistent respiratory ailments, which are key elements of postacute sequelae of SARS-CoV-2 infection (PASC); however, little is known about the underlying biological factors that may direct lung recovery and the extent to which these are affected by COVID-19 severity.METHODSWe performed a prospective cohort study of individuals with persistent symptoms after acute COVID-19, collecting clinical data, pulmonary function tests, and plasma samples used for multiplex profiling of inflammatory, metabolic, angiogenic, and fibrotic factors.RESULTSSixty-one participants were enrolled across 2 academic medical centers at a median of 9 weeks (interquartile range, 6-10 weeks) after COVID-19 illness: n = 13 participants (21%) had mild COVID-19 and were not hospitalized, n = 30 participants (49%) were hospitalized but were considered noncritical, and n = 18 participants (30%) were hospitalized and in the intensive care unit (ICU).
View Article and Find Full Text PDFIntroduction: Subjects recovering from COVID-19 frequently experience persistent respiratory ailments; however, little is known about the underlying biological factors that may direct lung recovery and the extent to which these are affected by COVID-19 severity.
Methods: We performed a prospective cohort study of subjects with persistent symptoms after acute COVID-19, collecting clinical data, pulmonary function tests, and plasma samples used for multiplex profiling of inflammatory, metabolic, angiogenic, and fibrotic factors.
Results: Sixty-one subjects were enrolled across two academic medical centers at a median of 9 weeks (interquartile range 6-10) after COVID-19 illness: n=13 subjects (21%) mild/non-hospitalized, n=30 (49%) hospitalized/non-critical, and n=18 subjects (30%) hospitalized/intensive care ("ICU").
Many cell surface receptors internalize their ligands and deliver them to endosomes, where the acidic pH causes the ligand to dissociate. The liberated receptor returns to the cell surface in a process called receptor cycling. The structural basis for pH-dependent ligand dissociation is not well understood.
View Article and Find Full Text PDFIntrinsically disordered regions (IDRs) of proteins are implicated in key macromolecular interactions. However, the molecular forces underlying IDR function within multicomponent assemblies remain elusive. By combining thermodynamic and structural data, we have discovered an allostery-based mechanism regulating the soluble core region of the nuclear pore complex (NPC) composed of nucleoporins Nup53, Nic96, and Nup157.
View Article and Find Full Text PDFAberrant Hedgehog (HH) signaling leads to various types of cancer and birth defects. N-terminally palmitoylated HH initiates signaling by binding its receptor Patched-1 (PTCH1). A recent 1:1 PTCH1-HH complex structure visualized a palmitate-mediated binding site on HH, which was inconsistent with previous studies that implied a distinct, calcium-mediated binding site for PTCH1 and HH co-receptors.
View Article and Find Full Text PDF