Publications by authors named "E Cochet"

Objective: To investigate retrospectively the frequency of usage of bimodal stimulation among cochlear implant (CI) users, as well its clinical benefit relative to unilateral use.

Design: All subjects had been monitored with the clinical Minimal Outcome Measurements test battery.

Study Samples: 103 adults with bilateral postlingual profound sensorineural hearing loss and unilateral CI use were extracted from the local database.

View Article and Find Full Text PDF

Purpose: To investigate the genetic basis of congenital ataxias (CAs), a unique group of cerebellar ataxias with a nonprogressive course, in 20 patients from consanguineous families, and to identify new CA genes.

Methods: Singleton -exome sequencing on these 20 well-clinically characterized CA patients. We first checked for rare homozygous pathogenic variants, then, for variants from a list of genes known to be associated with CA or very early-onset ataxia, regardless of their mode of inheritance.

View Article and Find Full Text PDF

The Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) acts as a co-activator of EBNA-2, a transcriptional activator essential for Epstein-Barr virus (EBV)-induced B-cell transformation. Burkitt's lymphoma (BL) cells harboring a mutant EBV strain that lacks both the EBNA-2 gene and 3' exons of EBNA-LP express Y1Y2-truncated isoforms of EBNA-LP (tEBNA-LP) and better resist apoptosis than if infected with the wild-type virus. In such BL cells, tEBNA-LP interacts with the protein phosphatase 2A (PP2A) catalytic subunit (PP2A C), and this interaction likely plays a role in resistance to apoptosis.

View Article and Find Full Text PDF

Pyrin responds to pathogen signals and loss of cellular homeostasis by forming an inflammasome complex that drives the cleavage and secretion of interleukin-1β (IL-1β). Mutations in the B30.2/SPRY domain cause pathogen-independent activation of pyrin and are responsible for the autoinflammatory disease familial Mediterranean fever (FMF).

View Article and Find Full Text PDF

Facioscapulohumeral dystrophy (FSHD) is an epi/genetic satellite disease associated with at least two satellite sequences in 4q35: (i) D4Z4 macrosatellite and (ii) β-satellite repeats (BSR), a prevalent part of the 4qA allele. Most of the recent FSHD studies have been focused on a DUX4 transcript inside D4Z4 and its tandem contraction in FSHD patients. However, the D4Z4-contraction alone is not pathological, which would also require the 4qA allele.

View Article and Find Full Text PDF