Publications by authors named "E Chauveau"

essential oil is a natural substance able to inhibit the growth of several pathogens. This antimicrobial effect is often attributed to its ability to penetrate cellular structures and disrupt them. Although these properties are recognized as playing a key role in the mechanism of action of this substance, many unresolved issues still exist, and fundamental studies focused on such aspects are scarce.

View Article and Find Full Text PDF

The interplay of soft responsive particles, such as microgels, with nanoparticles (NPs) yields highly versatile complexes that show great potential for applications, ranging from plasmonic sensing to catalysis and drug delivery. However, the microgel-NP assembly process has not been investigated so far at the microscopic level, thus hindering the possibility of designing such hybrid systems a priori. In this work, we combine state-of-the-art numerical simulations with experiments to elucidate the fundamental mechanisms taking place when microgel-NP assembly is controlled by electrostatic interactions and the associated effects on the structure of the resulting complexes.

View Article and Find Full Text PDF

We explore the impact of three water-soluble polyelectrolytes (PEs) on the flow of concentrated suspensions of poly(-isopropylacrylamide) (PNIPAm) microgels with thermoresponsive anionic charge density. By progressively adding the PEs to a jammed suspension of swollen microgels, we show that the rheology of the mixtures is remarkably influenced by the sign of the PE charge, PE concentration and hydrophobicity only when the temperature is increased above the microgel volume phase transition temperature , namely when microgels collapse, they are partially hydrophobic and form a volume-spanning colloidal gel. We find that the original gel is strengthened close to the isoelectric point, attained when microgels are mixed with cationic PEs, while PE hydrophobicity rules the gel strengthening at very high PE concentrations.

View Article and Find Full Text PDF

Both the dispersion state of nanoparticles (NPs) within polymer nanocomposites (PNCs) and the dynamical state of the polymer altered by the presence of the NP/polymer interfaces have a strong impact on the macroscopic properties of PNCs. In particular, mechanical properties are strongly affected by percolation of hard phases, which may be NP networks, dynamically modified polymer regions, or combinations of both. In this article, the impact on dispersion and dynamics of surface modification of the NPs by short monomethoxysilanes with eight carbons in the alkyl part (C) is studied.

View Article and Find Full Text PDF