What is the central question of this study? We investigated the effects of physical training on phenotypic (fibre-type content) and myogenic features (MyoD and myogenin expression) in skeletal muscle during the transition from cardiac hypertrophy to heart failure. What is the main finding and its importance? We provide new insight into skeletal muscle adaptations by showing that physical training increases the type I fibre content during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin expression. These results have important clinical implications for patients with heart failure, because this population has reduced muscle oxidative capacity.
View Article and Find Full Text PDFPurpose: Pancreatic ductal adenocarcinoma (PDAC) is largely incurable due to late diagnosis. Superior early detection biomarkers are critical to improving PDAC survival and risk stratification.
Experimental Design: Optimized meta-analysis of PDAC transcriptome datasets identified and validated key PDAC biomarkers.
This study was performed to compare CAPN1, CAPN2, CAST, TG, DGAT1 and LEP gene expressions and correlate them with meat quality traits in two genetic groups (Nellore and Canchim) in order to assess their expression profile and use their expression profile as genetic markers. We analyzed 30 young bulls (1year old), 15 of each genetic group. Samples of the Longissimus dorsi muscle were collected for analysis of: total lipids (TL) and meat tenderness measured as Warner-Bratzler shear force (SF) and myofibrillar fragmentation (MFI) at day of slaughter and 7days of aging.
View Article and Find Full Text PDFThe purpose of this study was to test the hypothesis that skeletal muscle adaptations induced by long-term resistance training (RT) are associated with increased myogenic regulatory factors (MRF) and insulin-like growth factor-I (IGF-I) mRNA expression in rats skeletal muscle. Male Wistar rats were divided into 4 groups: 8-week control (C8), 8-week trained (T8), 12-week control (C12) and 12-week trained (T12). Trained rats were submitted to a progressive RT program (4 sets of 10-12 repetitions at 65-75% of the 1RM, 3 day/week), using a squat-training apparatus with electric stimulation.
View Article and Find Full Text PDF