Am J Physiol Gastrointest Liver Physiol
April 2017
Neuronal and inducible nitric oxide synthase (nNOS and iNOS) play a protective and damaging role, respectively, on the intestinal neuromuscular function after ischemia-reperfusion (I/R) injury. To uncover the molecular pathways underlying this dichotomy we investigated their possible correlation with the orthodenticle homeobox proteins OTX1 and OTX2 in the rat small intestine myenteric plexus after in vivo I/R. Homeobox genes are fundamental for the regulation of the gut wall homeostasis both during development and in pathological conditions (inflammation, cancer).
View Article and Find Full Text PDFNitric oxide (NO) and glutamate, via N-methyl-d-aspartate (NMDA) receptors, participate to changes in neuromuscular responses after ischemic/reperfusion (I/R) injury in the gut. In the present study we investigated the existence of a possible interplay between nitrergic and NMDA receptor pathways in the guinea pig ileum after in vitro I/R injury, resorting to functional and biomolecular approaches. In normal metabolic conditions NMDA concentration-dependently enhanced both glutamate (analyzed by high performance liquid chromatography with fluorimetric detection) and NO (spectrophotometrically quantified as NO2(-) and NO3(-)) spontaneous overflow from isolated ileal segments.
View Article and Find Full Text PDFAlterations of the enteric glutamatergic transmission may underlay changes in the function of myenteric neurons following intestinal ischemia and reperfusion (I/R) contributing to impairment of gastrointestinal motility occurring in these pathological conditions. The aim of the present study was to evaluate whether glutamate receptors of the NMDA and AMPA/kainate type are involved in myenteric neuron cell damage induced by I/R. Primary cultured rat myenteric ganglia were exposed to sodium azide and glucose deprivation (in vitro chemical ischemia).
View Article and Find Full Text PDFThe contribution of magnesium to cell differentiation is not clear. Some studies indicate that low extracellular magnesium promotes cell differentiation, while others reach opposite conclusions. We evaluated the effects of different concentrations of extracellular magnesium on the differentiation of three in vitro experimental models: human endothelial cells seeded onto Matrigel; phorbol ester-treated myeloid leukemia U937 cells; and 3T3-L1 pre-adipocytes exposed to a hormonal cocktail containing dexamethasone and insulin.
View Article and Find Full Text PDF