Unlabelled: Inflammation has been proposed as a major component of neurodegenerative diseases, although the precise role it plays has yet to be defined. We examined the role of key contributors to this inflammatory process, microglia, the major resident immune cell population of the brain, in a prion disease model of chronic neurodegeneration. Initially, we performed an extensive reanalysis of a large study of prion disease, where the transcriptome of mouse brains had been monitored throughout the time course of disease.
View Article and Find Full Text PDFUnlabelled: The risk of transmission of transmissible spongiform encephalopathies (TSE) between different species has been notoriously unpredictable because the mechanisms of transmission are not fully understood. A transmission barrier between species often prevents infection of a new host with a TSE agent. Nonetheless, some TSE agents are able to cross this barrier and infect new species, with devastating consequences.
View Article and Find Full Text PDFThe agents responsible for transmissible spongiform encephalopathies (TSEs), or prion diseases, contain as a major component PrP(Sc), an abnormal conformer of the host glycoprotein PrP(C). TSE agents are distinguished by differences in phenotypic properties in the host, which nevertheless can contain PrP(Sc) with the same amino-acid sequence. If PrP alone carries information defining strain properties, these must be encoded by post-translational events.
View Article and Find Full Text PDFSusceptibility to prion infection involves interplay between the prion strain and host genetics, but expression of the host-encoded cellular prion protein is a known prerequisite. Here we consider human embryonic stem cell (hESC) susceptibility by characterizing the genetics and expression of the normal cellular prion protein and by examining their response to acute prion exposure. Seven hESC lines were tested for their prion protein gene codon 129 genotype and this was found to broadly reflect that of the normal population.
View Article and Find Full Text PDFTransmissible spongiform encephalopathy (TSE) infectivity naturally spreads from site of entry in the periphery to the central nervous system where pathological lesions are formed. Several routes and cells within the host have been identified as important for facilitating the infectious process. Expression of the glycoprotein cellular PrP (PrP(C)) is considered a key factor for replication of infectivity in the central nervous system (CNS) and its transport to the brain, and it has been suggested that the infectious agent propagates from cell to cell via a domino-like effect.
View Article and Find Full Text PDF