Publications by authors named "E Calura"

Article Synopsis
  • Understanding cancer involves exploring mechanisms, categorizing subtypes, predicting outcomes, and evaluating treatment effectiveness, with gene-expression signatures being vital tools over the last decade.
  • Recent technological advancements like single-cell RNA sequencing have exposed the complexity of tumor cells, prompting the need for new computational tools to analyze this heterogeneity accurately.
  • The R Bioconductor package "signifinder" helps streamline the use of cancer transcriptional signatures across various data types, enhancing the analysis of tumor features through case studies that illustrate its effectiveness in oncology research.
View Article and Find Full Text PDF

Epithelial ovarian cancer is a significant global health issue among women. Diagnosis and treatment pose challenges due to difficulties in predicting patient responses to therapy, primarily stemming from gaps in understanding tumor chemoresistance mechanisms. Recent advancements in transcriptomic technologies like single-cell RNA sequencing and spatial transcriptomics have greatly improved our understanding of ovarian cancer intratumor heterogeneity and tumor microenvironment composition.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a major life-threatening disease, being the third most common cancer and a leading cause of death worldwide. Enhanced adiposity, particularly visceral fat, is a major risk factor for CRC, and obesity-associated alterations in metabolic, inflammatory and immune profiles in visceral adipose tissue (VAT) strongly contribute to promoting or sustaining intestinal carcinogenesis. The role of diet and nutrition in obesity and CRC has been extensively demonstrated, and AT represents the main place where diet-induced signals are integrated.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial fatty acid oxidation (FAO) is crucial for the self-renewal of hematopoietic stem cells (HSCs), with a significant role in their cellular metabolism.
  • HSCs contain the highest levels of mitochondrial NADPH, which is necessary for maintaining their fate and homeostasis, primarily by supporting cholesterol synthesis.
  • Disrupting FAO affects the distribution of mitochondrial NADPH in daughter cells during HSC division, demonstrating that the FAO-NADPH-cholesterol pathway is essential for the formation of extracellular vesicles, which in turn is vital for HSC self-renewal and overall blood cell production.
View Article and Find Full Text PDF

Objective: Copy number variations (CNVs) play crucial roles in physiological and pathological processes, including cancer. However, the functional implications of somatic CNVs in tumor progression and evolution remain unclear. This study focuses on identifying CNV alterations with high pathogenic potential that drive and sustain tumorigenesis, distinguishing them from passenger alterations that accumulate during tumor growth.

View Article and Find Full Text PDF