Publications by authors named "E Callan"

Objectives: Since June 2022, there has been a rise in the number of ceftriaxone-resistant Neisseria gonorrhoeae cases detected in England (n = 15), of which a third were XDR. We describe the demographic and clinical details of the recent cases and investigate the phenotypic and molecular characteristics of the isolates. For a comprehensive overview, we also reviewed 16 ceftriaxone-resistant cases previously identified in England since December 2015 and performed a global genomic comparison of all publicly available ceftriaxone-resistant N.

View Article and Find Full Text PDF

The meningococcal group B vaccine, 4CMenB, is a broad-spectrum, recombinant protein vaccine that is licensed for protection against meningococcal group B disease in children and adults. Over the past decade, several observational studies supported by laboratory studies have reported protection by 4CMenB against gonorrhoea, a sexually transmitted infection caused by Neisseria gonorrhoeae. Gonorrhoea is a major global public health problem, with rising numbers of diagnoses and increasing resistance to multiple antibiotics.

View Article and Find Full Text PDF

Background: Antimicrobial resistance in Neisseria gonorrhoeae is a global public health concern. Tetracycline resistance (TetR) increased from 39.4% to 75.

View Article and Find Full Text PDF

Inhaled nitric oxide (iNO) therapy had a transformational impact on the management of infants with persistent pulmonary hypertension of the newborn (PPHN). iNO remains the only approved pulmonary vasodilator for PPHN; yet 30% to 40% of patients do not respond or have incomplete response to iNO. Lung recruitment strategies with early surfactant administration and high-frequency ventilation can optimize the response to iNO in the presence of parenchymal lung diseases.

View Article and Find Full Text PDF

Decreased angiogenesis contributes to persistent pulmonary hypertension of the newborn (PPHN); mechanisms remain unclear. AMPK (5'AMP activated protein kinase) is a key regulator of cell metabolism. We investigated the hypothesis that a decrease in AMPK function leads to mitochondrial dysfunction and altered balance of notch ligands delta-like 4 (DLL4) and Jagged 1 (Jag1) to impair angiogenesis in PPHN.

View Article and Find Full Text PDF