With their ability to self-assemble spontaneously into well-defined nanoscale morphologies, block copolymer (BCP) thin films are a versatile platform to fabricate functional nanomaterials. An important challenge to wider deployment of BCPs in nanofabrication is combining precise control over the nanoscale domain orientation in BCP assemblies with scalable deposition techniques that are applicable to large-area, curved, and flexible substrates. Here, we show that spray-deposited smooth films of a nominally disordered BCP exhibit latent orientations, which can be prescriptively selected by controlling solvent evaporation during spray casting.
View Article and Find Full Text PDFAs expensive therapeutics rise to the fore of heart failure management, out-of-pocket (OOP) medication costs have become increasingly relevant to patient care. Prescription medication costs influence medical decision-making and affect adherence. Yet, individualized cost estimates are seldom available during clinical encounters when prescription decisions are made.
View Article and Find Full Text PDFIntroduction: The introduction of generative artificial intelligence (AI) may have a profound effect on residency applications. In this study, we explore the abilities of AI-generated letters of recommendation (LORs) by evaluating the accuracy of orthopaedic surgery residency selection committee members to identify LORs written by human or AI authors.
Methods: In a multicenter, single-blind trial, a total of 45 LORs (15 human, 15 ChatGPT, and 15 Google BARD) were curated.
Right ventricular dysfunction (RVD) portends increased death risk for heart failure (HF) and pulmonary arterial hypertension (PAH) patients, regardless of left ventricular function or disease etiology. In both, RVD arises from chronic RV pressure overload and represents advanced cardiopulmonary disease. RV remodeling responses and survival rates of patients, however, differ by sex.
View Article and Find Full Text PDFWe contrast the switching of photoluminescence (PL) of PbS quantum dots (QDs) cross-linked with photochromic diarylethene molecules with different end groups, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] () and 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenethiocarboxylic acid] (). Our results show that the QDs cross-linked with the carboxylic acid end group molecules () exhibit a greater amount of switching in photoluminescence intensity compared to QDs cross-linked with the thiocarboxylic acid end group (). We also demonstrate that regardless of the molecule used, greater switching amounts are observed for smaller quantum dots.
View Article and Find Full Text PDF