Publications by authors named "E C Sivret"

A diverse range of volatile organic compounds (VOCs) are emitted from wastewater biosolids processing. Odorous emissions are predominately made up of volatile sulfur compounds (VSCs) which are typically the only odorants measured. However, a range of VOCs are known to contribute to malodours yet previous studies often overlook the contribution of VOCs in comparison with VSCs.

View Article and Find Full Text PDF

Passive liquid surfaces in wastewater treatment plants may be potential sources of odorous emissions. This study investigates the occurrence and significance of deviations that may originate from the use of the effective diameter as fetch parameter in the empirical correlations utilised by the WATER9 model to estimate odorous emissions at passive liquid surfaces. A sensitivity analysis was performed using benzene as a model compound and considering representative conditions of wind speed and wind alignment.

View Article and Find Full Text PDF

Volatile sulfur and volatile organic compound (VSC and VOC, respectively) emissions were measured over a 3.5 year period from 21 field monitoring sites across Australia to determine their potential contribution to sewer odours and support the evaluation of odour abatement processes used to treat sewer emissions. Measured VOC concentrations were generally less than 250 μg/m(3), although some VOCs (toluene, trimethylbenzene and cymene) were present at higher concentrations.

View Article and Find Full Text PDF

Odorous emissions from agricultural and waste management operations can cause annoyance to local populations. Volatile sulfur compounds (VSCs) are dominant odorants that are often lost during collection using sample bags. The degree of VSC losses depends on factors such as storage time, bag materials, temperature, sample relative humidity (RH), light exposure, and the presence of volatile organic compounds (VOCs).

View Article and Find Full Text PDF

The management of odorous emissions from sewer networks has become an important issue for sewer operators resulting in the need to better understand the composition of volatile organic sulfur compounds (VOSCs). In order to characterise the composition of such malodorous emissions, a method based on thermal desorption (TD) and gas chromatography coupled to sulfur chemiluminescence detector (GC-SCD) has been developed to determine a broader range of VOSCs, hydrogen sulfide (H2S), methanethiol (MeSH), ethanethiol (EtSH), dimethyl sulfide (DMS), carbon disulfide (CS2), ethylmethyl sulfide (EMS), 1-butanethiol (1-BuSH), dimethyl disulfide (DMDS), diethyl disulfide (DEDS), and dimethyl trisulfide (DMTS). Parameters affecting the chromatographic behaviour of the target compounds were studied (e.

View Article and Find Full Text PDF