Publications by authors named "E C Ontsouka"

The Developmental Origins of Health and Disease hypothesis sustains that exposure to different stressors during prenatal development prepares the offspring for the challenges to be encountered after birth. We studied the gestational period as a particularly vulnerable window where different stressors can have strong implications for fetal programming of the offspring's life-long metabolic status via alterations of specific placentally expressed nutrient transporters. To study this mechanism, we used a murine prenatal stress model, human preeclampsia, early miscarriage, and healthy placental tissue samples, in addition to in vitro models of placental cells.

View Article and Find Full Text PDF

To date, the discussion concerning bile acids (BAs) during gestation is almost exclusively linked to pregnancy complications such as intrahepatic cholestasis of pregnancy (ICP) when maternal serum BA levels reach very high concentrations (>100 μM). Generally, the placenta is believed to serve as a protective barrier avoiding exposure of the growing fetus to excessive amounts of maternal BAs that might cause detrimental effects (e.g.

View Article and Find Full Text PDF

Bile acids (BAs) are natural ligands for several receptors modulating cell activities. BAs are synthesized via the classic (neutral) and alternative (acidic) pathways. The classic pathway is initiated by CYP7A1/Cyp7a1, converting cholesterol to 7α-hydroxycholesterol, while the alternative pathway starts with hydroxylation of the cholesterol side chain, producing an oxysterol.

View Article and Find Full Text PDF

Introduction: In pregnancy, aldosterone is linked to maternal plasma volume expansion, improved fetal and placental growth/angiogenesis and reduced maternal blood pressure. Aldosterone levels are low in women with pre-eclampsia. Given the placental growth properties of aldosterone in pregnancy, we hypothesised that increased aldosterone improves placental function ex vivo.

View Article and Find Full Text PDF

Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-related condition characterized by increased maternal circulating bile acids (BAs) having adverse fetal effects. We investigated whether the human placenta expresses specific regulation patterns to prevent fetal exposition to harmful amounts of BAs during ICP. Using real-time quantitative PCR, we screened placentae from healthy pregnancies ( = 12) and corresponding trophoblast cells ( = 3) for the expression of 21 solute carriers and ATP-binding cassette transporter proteins, all acknowledged as BA- and/or cholestasis-related genes.

View Article and Find Full Text PDF