Deficits in cognitive flexibility have been characterized in affective, anxiety, and neurodegenerative disorders. This paper reviews data, mainly from studies on animal models, that support the existence of a cortical-striatal brain circuit modulated by dopamine (DA), playing a major role in cognitive/behavioral flexibility. Moreover, we reviewed clinical findings supporting misfunctioning of this circuit in Parkinson's disease that could be responsible for some important non-motoric symptoms.
View Article and Find Full Text PDFMultimodal astrocyte-neuron communications govern brain circuitry assembly and function. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca-dependent exocytosis similar to neurons.
View Article and Find Full Text PDFDysfunctional coping styles are involved in the development, persistence, and relapse of psychiatric diseases. Passive coping with stress challenges (helplessness) is most commonly used in animal models of dysfunctional coping, although active coping strategies are associated with generalized anxiety disorder, social anxiety disorder, panic, and phobias as well as obsessive-compulsive and post-traumatic stress disorder. This paper analyzes the development of dysfunctional active coping strategies of mice of the helplessness-resistant DBA/2J (D2) inbred strain, submitted to temporary reduction in food availability in an uncontrollable and unavoidable condition.
View Article and Find Full Text PDFWhat happens precociously to the brain destined to develop Alzheimer's Disease (AD) still remains to be elucidated and this is one reason why effective AD treatments are missing. Recent experimental and clinical studies indicate that the degeneration of the dopaminergic (DA) neurons in the Ventral Tegmental Area (VTA) could be one of the first events occurring in AD. However, the causes of the increased vulnerability of DA neurons in AD are missing.
View Article and Find Full Text PDFDopamine (DA) in medial prefrontal cortex is crucial in extinction of aversive or appetitive experiences. Although attention has been mostly focused on the infralimbic area of prefrontal cortex, a role of the prelimbic (PL) area has been envisaged pointing to DA transmission in the extinction of drug conditioned behavior. Evidence shows that DA exerts its action also via both D1 and D2 receptor subtypes.
View Article and Find Full Text PDF