Vitrification is the most effective method for the immobilization of hazardous waste by incorporating toxic elements into a glass structure. Iron phosphate glasses are presently being considered as matrices for the storage of radioactive waste, even of those which cannot be vitrified using conventional borosilicate waste glass. In this study, a structural model of 60P2O5-40Fe2O3 glass is proposed.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
August 2010
The titanium-manganese (TiMn) alloys have been extensively used in aerospace and hydrogen storage. In this study, the TiMn alloys with various manganese contents ranging from 2 to 12 wt % were prepared by using mechanical alloying and spark plasma sintering (SPS) techniques. The microstructures, mechanical properties including hardness, elastic modulus and ductility, cytotoxicity and cell proliferation properties of the TiMn alloys were investigated to explore their biomedical applications.
View Article and Find Full Text PDFThe reason for the extended use of titanium and its alloys as implant biomaterials stems from their lower elastic modulus, their superior biocompatibility and improved corrosion resistance compared to the more conventional stainless steel and cobalt-based alloys [Niinomi, M., Hattori, T., Niwa, S.
View Article and Find Full Text PDF