Background: Blood coagulation abnormalities play a major role in COVID-19 pathophysiology. However, the specific details of hypercoagulation and anticoagulation treatment require investigation. The aim of this study was to investigate the status of the coagulation system by means of integral and local clotting assays in COVID-19 patients on admission to the hospital and in hospitalized COVID-19 patients receiving heparin thromboprophylaxis.
View Article and Find Full Text PDFIn situ 3D bioprinting is a new emerging therapeutic modality for treating human skin diseases. The tissue spheroids have been previously suggested as a powerful tool in rapidly expanding bioprinting technology. It has been demonstrated that the regenerative potential of human dermal fibroblasts could be quantitatively evaluated in 2D cell culture and confirmed after implantation in vivo.
View Article and Find Full Text PDFAim: In a retrospective study, we evaluated factors associated with the early development of septic shock in patients with severe COVID-19.
Materials And Methods: We collected medical records of the intensive care unit patients submitted by the local COVID-19 hospitals across Russia to the Federal Center for the Critical Care at the Sechenov First Moscow State Medical University (Sechenov University). Septic shock in crticially ill patients requiring mechanical ventilation was defined as a need in vasopressors to maintain blood pressure.
Cytoskeleton systems, actin microfilaments, microtubules (MTs) and intermediate filaments (IFs) provide the biomechanical stability and spatial organization in cells. To understand the specific contributions of each cytoskeleton systems to intrinsic properties of spheroids, we've scrutinized the effects of the cytoskeleton perturbants, cytochalasin D (Cyto D), nocodazole (Noc) and withaferin A (WFA) on fusion, spreading on adhesive surface, morphology and biomechanics of chondrospheres (CSs). We confirmed that treatment with Cyto D but not with Noc or WFA severely affected CSs fusion and spreading dynamics and significantly reduced biomechanical properties of cell aggregates.
View Article and Find Full Text PDFBackground: The epidemiology, clinical course, and outcomes of patients with coronavirus disease 2019 (COVID-19) in the Russian population are unknown. Information on the differences between laboratory-confirmed and clinically diagnosed COVID-19 in real-life settings is lacking.
Methods: We extracted data from the medical records of adult patients who were consecutively admitted for suspected COVID-19 infection in Moscow between 8 April and 28 May 2020.