In photopharmacology, photoswitchable compounds including azobenzene or other diarylazo moieties exhibit bioactivity against a target protein typically in the slender E-configuration, whereas the rather bulky Z-configuration usually is pharmacologically less potent. Herein we report the design, synthesis and photochemical/inhibitory characterization of new photoswitchable kinase inhibitors targeting p38α MAPK and CK1δ. A well characterized inhibitor scaffold was used to attach arylazo- and diazocine moieties.
View Article and Find Full Text PDFIn this study, we report on the modification of a 3,4-diaryl-isoxazole-based CK1 inhibitor with chiral pyrrolidine scaffolds to develop potent and selective CK1 inhibitors. The pharmacophore of the lead structure was extended towards the ribose pocket of the adenosine triphosphate (ATP) binding site driven by structure-based drug design. For an upscale compatible multigram synthesis of the functionalized pyrrolidine scaffolds, we used a chiral pool synthetic route starting from methionine.
View Article and Find Full Text PDFInhibitors of Wnt production (IWPs) are known antagonists of the Wnt pathway, targeting the membrane-bound O-acyltransferase porcupine (Porcn) and thus preventing a crucial Wnt ligand palmitoylation. Since IWPs show structural similarities to benzimidazole-based CK1 inhibitors, we hypothesized that IWPs could also inhibit CK1 isoforms. Molecular modeling revealed a plausible binding mode of IWP-2 in the ATP binding pocket of CK1δ which was confirmed by X-ray analysis.
View Article and Find Full Text PDFThe involvement of protein kinase CK1δ in the pathogenesis of severe disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, familial advanced sleep phase syndrome, and cancer has dramatically increased interest in the development of effective small molecule inhibitors for both therapeutic application and basic research. Unfortunately, the design of CK1 isoform-specific compounds has proved to be highly complicated due to the existence of six evolutionarily conserved human CK1 members that possess similar, different, or even opposite physiological and pathophysiological implications. Consequently, only few potent and selective CK1δ inhibitors have been reported so far and structurally divergent approaches are urgently needed in order to establish SAR that might enable complete discrimination of CK1 isoforms and related p38α MAPK.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
December 2015
The U32 family is a collection of over 2500 annotated peptidases in the MEROPS database with unknown catalytic mechanism. They mainly occur in bacteria and archaea, but a few representatives have also been identified in eukarya. Many of the U32 members have been linked to pathogenicity, such as proteins from Helicobacter and Salmonella.
View Article and Find Full Text PDF