IEEE Trans Vis Comput Graph
December 2017
We provide a qualitative and quantitative evaluation of 8 clear sky models used in Computer Graphics. We compare the models with each other as well as with measurements and with a reference model from the physics community. After a short summary of the physics of the problem, we present the measurements and the reference model, and how we "invert" it to get the model parameters.
View Article and Find Full Text PDFAn original approach has been presented to characterize the local geometry of pores containing protonated small molecule impurities in organic materials. It was here applied in TATB (1,3,5-triamino-2,4,6-trinitrobenzene) powder material to investigate the porosity able to enclose water molecules. The presence of such defects may have a significant impact on TATB-based compositions mechanical properties, efficiency, and shock sensitivity.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2012
Rendering a complex surface accurately and without aliasing requires the evaluation of an integral for each pixel, namely, a weighted average of the outgoing radiance over the pixel footprint on the surface. The outgoing radiance is itself given by a local illumination equation as a function of the incident radiance and of the surface properties. Computing all this numerically during rendering can be extremely costly.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
November 2011
Texturing an animated fluid is a useful way to augment the visual complexity of pictures without increasing the simulation time. But texturing flowing fluids is a complex issue, as it creates conflicting requirements: we want to keep the key texture properties (features, spectrum) while advecting the texture with the underlying flow-which distorts it. In this paper, we present a new, Lagrangian, method for advecting textures: the advected texture is computed only locally and follows the velocity field at each pixel.
View Article and Find Full Text PDF