ACS Appl Mater Interfaces
January 2017
Epitaxial VO/TiO thin film heterostructures were grown on (100) (m-cut) AlO substrates via pulsed laser deposition. We have demonstrated the ability to reduce the semiconductor-metal transition (SMT) temperature of VO to ∼44 °C while retaining a 4 order of magnitude SMT using the TiO buffer layer. A combination of electrical transport and X-ray diffraction reciprocal space mapping studies help examine the specific strain states of VO/TiO/AlO heterostructures as a function of TiO film growth temperatures.
View Article and Find Full Text PDFOver the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques.
View Article and Find Full Text PDFVO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination.
View Article and Find Full Text PDFWe report intense, narrow line-width, surface chemisorption-activated and reversible ultraviolet (UV) photoluminescence from radiative recombination of the two-dimensional electron gas (2DEG) with photoexcited holes at LaAlO3/SrTiO3. The switchable luminescence arises from an electron transfer-driven modification of the electronic structure via H-chemisorption onto the AlO2-terminated surface of LaAlO3, at least 2 nm away from the interface. The control of the onset of emission and its intensity are functionalities that go beyond the luminescence of compound semiconductor quantum wells.
View Article and Find Full Text PDFSr2Ti7O14, a new phase, is synthesized by leveraging the innate chemical and thermo-dynamic instabilities in the SrTiO3-TiO2 system and non-equilibrium growth techniques. The chemical composition, epitaxial relationships, and orientation play roles in the formation of this novel layered phase, which, in turn, possesses unusual charge ordering, anti-ferromagnetic ordering, and low, glass-like thermal conductivity.
View Article and Find Full Text PDF