Publications by authors named "E Boye"

The lack of clearly defined criteria for doping tests carries a great risk of punishing innocent athletes and undermines the fight against doping in international sports.

View Article and Find Full Text PDF

Cellular asymmetry plays a major role in the ageing and evolution of multicellular organisms. However, it remains unknown how the cell distinguishes 'old' from 'new' and whether asymmetry is an attribute of highly specialized cells or a feature inherent in all cells. Here, we investigate the segregation of three asymmetric features: old and new DNA, the spindle pole body (SPB, the centrosome analogue) and the old and new cell ends, using a simple unicellular eukaryote, .

View Article and Find Full Text PDF

We discuss novel insight into the role and consequences of the phosphorylation of the translation initiation factor eIF2α in the context of stress responses and cell-cycle regulation. eIF2α is centrally located to regulate translation and its phosphorylation in response to different environmental challenges is one of the best characterized stress-response pathways. In addition to its role in stress management, eIF2α phosphorylation is also linked to cell-cycle progression and memory consolidation in the nervous system.

View Article and Find Full Text PDF

Antidoping work is heavily based on scientific analyses of biological material, such as urine and blood. Because of the high stakes both for sports and for the athletes involved it is important that analyses are performed and interpreted in agreement with established scientific standards and professional norms. This is not always the case, as we document here.

View Article and Find Full Text PDF

It is generally accepted that global translation varies during the cell cycle and is low during mitosis. However, addressing this issue is challenging because it involves cell synchronization, which evokes stress responses that, in turn, affect translation rates. Here, we have used two approaches to measure global translation rates in different cell-cycle phases.

View Article and Find Full Text PDF