Publications by authors named "E Boscolo"

Three-dimensional (3D) imaging of vascular networks is essential for the investigation of vascular patterning and organization. Here, we present a step-by-step protocol for the 3D visualization of the vasculature within whole-mount preparations of the mouse intestinal muscularis propria layer. We then detail the quantitative analysis of the resulting images for parameters such as vessel density, vessel diameter, the number of endothelial cells, and proliferation.

View Article and Find Full Text PDF

Capillary malformation (CM), or port wine birthmark, is a cutaneous congenital vascular anomaly that occurs in 0.1%-2% of newborns. Patients with a CM localized on the forehead have an increased risk of developing a neurocutaneous disorder called encephalotrigeminal angiomatosis or Sturge-Weber syndrome (SWS), with complications including seizure, developmental delay, glaucoma, and vision loss.

View Article and Find Full Text PDF

Venous malformations (VMs) consist of hugely enlarged and dysmorphic veins. These lesions cause significant disfigurement, pain, and complications such as bleeding and coagulopathy. Pharmacotherapy for the treatment of VMs has limited efficacy and potentially limiting toxicity.

View Article and Find Full Text PDF

Activating non-inherited mutations in the guanine nucleotide-binding protein G(q) subunit alpha (GNAQ) gene family have been identified in childhood vascular tumors. Patients experience extensive disfigurement, chronic pain and severe complications including a potentially lethal coagulopathy termed Kasabach-Merritt phenomenon. Animal models for this class of vascular tumors do not exist.

View Article and Find Full Text PDF

Somatic mutations in NRAS drive the pathogenesis of melanoma and other cancers but their role in vascular anomalies and specifically human endothelial cells is unclear. The goals of this study were to determine whether the somatic-activating NRAS mutation in human endothelial cells induces abnormal angiogenesis and to develop in vitro and in vivo models to identify disease-causing pathways and test inhibitors. Here, we used mutant NRAS and wild-type NRAS (NRAS) expressing human endothelial cells in in vitro and in vivo angiogenesis models.

View Article and Find Full Text PDF