Objectives: The circadian clocks are internal timing mechanisms that drive ∼24-hour rhythms in a tissue-specific manner. Many aspects of the physiology of the intervertebral disc (IVD) show clear diurnal rhythms. However, it is unknown whether IVD tissue contains functional circadian clocks and if so, how their dysregulation is implicated in IVD degeneration.
View Article and Find Full Text PDFObjective: To define how the catabolic cytokines (Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα)) affect the circadian clock mechanism and the expression of clock-controlled catabolic genes within cartilage, and to identify the downstream pathways linking the cytokines to the molecular clock within chondrocytes.
Methods: Ex vivo cartilage explants were isolated from the Cry1-luc or PER2::LUC clock reporter mice. Clock gene dynamics were monitored in real-time by bioluminescence photon counting.
Stimulus generalization occurs when stimuli with characteristics similar to a previously conditioned stimulus (CS) become able to evoke a previously conditioned response. Experimental data (Lissek et al., 2005) indicate that patients with post-traumatic stress disorder (PTSD), more often show stimulus generalization following fear conditioning when tested under laboratory conditions.
View Article and Find Full Text PDFAstrocytic Toll-like receptor 3 (TLR3) plays an important role not only in antiviral response but also in regeneration/healing of the CNS. The present study was undertaken to determine whether the neuroprotective effects of TLR3 signaling also include antioxidative protection. TLR3 ligation in human astrocytes induced protracted resistance of the cells to H(2)O(2) toxicity.
View Article and Find Full Text PDFMucopolysaccharidoses (MPS) are inherited metabolic disorders, caused by mutations leading to dysfunction of one of enzymes involved in degradation of glycosaminoglycans (GAGs) in lysosomes. Due to their impaired degradation, GAGs accumulate in cells of patients, which results in dysfunction of tissues and organs, including the heart, respiratory system, bones, joints and central nervous system. Depending on the kind of deficient enzyme, 11 types and subtypes of MPS are currently recognized.
View Article and Find Full Text PDF