Background: Metastasis to the brain is a major challenge with poor prognosis. The blood-brain barrier (BBB) is a significant impediment to effective treatment, being intact during the early stages of tumor development and heterogeneously permeable at later stages. Intravenous injection of tumor necrosis factor (TNF) selectively induces BBB permeabilization at sites of brain micrometastasis, in a TNF type 1 receptor (TNFR1)-dependent manner.
View Article and Find Full Text PDFAntibodies are a unique class of proteins with the ability to adapt their binding sites for high affinity and high specificity to a multitude of antigens. Many analyses have been performed on antibody sequences and structures to elucidate which amino acids have a predominant role in antibody interactions with antigens. These studies have generally not distinguished between amino acids selected for broad antigen specificity in the primary immune response and those selected for high affinity in the secondary immune response.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2009
Bacteria like Escherichia coli and Pseudomonas aeruginosa expel drugs via tripartite multidrug efflux pumps spanning both inner and outer membranes and the intervening periplasm. In these pumps a periplasmic adaptor protein connects a substrate-binding inner membrane transporter to an outer membrane-anchored TolC-type exit duct. High-resolution structures of all 3 components are available, but a pump model has been precluded by the incomplete adaptor structure, because of the apparent disorder of its N and C termini.
View Article and Find Full Text PDFBacteria such as Escherichia coli and Pseudomonas aeruginosa expel antibiotics and other inhibitors via tripartite multidrug efflux pumps spanning the inner and outer membranes and the intervening periplasmic space. A key event in pump assembly is the recruitment of an outer membrane-anchored TolC exit duct by the adaptor protein of a cognate inner membrane translocase, establishing a contiguous transenvelope efflux pore. We describe the underlying interaction of juxtaposed periplasmic exit duct and adaptor coiled-coils in the widespread RND-type pump TolC/AcrAB of E.
View Article and Find Full Text PDFBacterial multidrug efflux pumps operate by periplasmic recruitment and opening of TolC family outer membrane exit ducts by cognate inner membrane translocases. Directed evolution of active hybrid pumps was achieved by challenging a library of mutated, shuffled TolC variants to adapt to the non-cognate Pseudomonas MexAB translocase, and confer resistance to the efflux substrate novobiocin. Amino acid substitutions in MexAB-adapted TolC variants that endowed high resistance were recreated independently, and revealed that MexAB-adaptation was conferred only by substitutions located in the lower alpha-helical barrel of TolC, specifically the periplasmic equatorial domain and entrance coiled coils.
View Article and Find Full Text PDF