We have recently reported on an experimental model of mitochondrial mistranslation conferred by amino acid exchange V338Y in the mitochondrial ribosomal protein MrpS5. Here we used a combination of RNA-Seq and metabolic profiling of homozygous transgenic MrpS5V338Y/V338Y mice to analyze the changes associated with the V338Y mutation in post-mitotic skeletal muscle. Metabolic profiling demonstrated age-dependent metabolic changes in the mutant V338Y animals, which included enhanced levels of age-associated metabolites and which were accompanied by increased glycolysis, lipid desaturation and eicosanoid biosynthesis, and alterations of the pentose phosphate pathway.
View Article and Find Full Text PDFThe emergence of drug-resistant strains of Mycobacterium tuberculosis is a challenge to global tuberculosis (TB) control. Although culture-based methods have been regarded as the gold standard for drug susceptibility testing (DST), molecular methods provide rapid information on mutations in the M. tuberculosis genome associated with resistance to anti-tuberculosis drugs.
View Article and Find Full Text PDFHere we study links between aminoglycoside-induced mistranslation, protein misfolding and neuropathy. We demonstrate that aminoglycosides induce misreading in mammalian cells and assess endoplasmic reticulum (ER) stress and unfolded protein response (UPR) pathways. Genome-wide transcriptome and proteome analyses revealed upregulation of genes related to protein folding and degradation.
View Article and Find Full Text PDFObjectives: The purpose of this study was to determine the levels of isoniazid and ethionamide resistance and to identify associated mutations in endemic multidrug-resistant (MDR) strains of Mycobacterium tuberculosis from the Lisbon metropolitan area, Portugal.
Methods: Seventeen clinical MDR tuberculosis (TB) strains were characterized by standard and semi-quantitative drug susceptibility testing to assess the level of isoniazid and ethionamide resistance. The genes katG, inhA, ethA and ndh were screened for mutations.
The mitochondrial rRNA of the tapeworm species Echinococcus multilocularis carries an adenine at sequence position 2058 (numbering according to that for Escherichia coli) of the large-subunit rRNA (lsrRNA), while the nucleus-encoded rRNA, as determined in this study, is characterized by 2058G. This indicates a dichotomy in the drug susceptibilities of ribosomes: cytoplasmic ribosomes are predicted to be resistant to macrolide antibiotics, while mitochondrial ribosomes lack the most common chromosomal resistance determinant, lsrRNA 2058G. Upon incubation with the macrolide clarithromycin, the formation of vesicles from metacestode tissue was reduced in a dose-dependent manner.
View Article and Find Full Text PDF