Publications by authors named "E Boeggeman"

On the basis of the crystal structure of bovine β4Gal-T1 enzyme, mutation of a single amino acid Y289 to L289 (Y289L) changed its donor specificity from Gal to N-acetyl-galactosamine (GalNAc). A chemoenzymatic method that uses GalNAc analogues like GalNAz or 2-keto-Gal as sugar donors with the enzyme Y289L-β4Gal-T1 has identified hundreds of cytosolic and nuclear proteins that have O-GlcNAc modifications. To avoid potential cytotoxicity at Mn(2+) concentrations required to selectively modify GlcNAc residues on the surface of live cells, we have engineered a Mg(2+)-dependent enzyme.

View Article and Find Full Text PDF

N-acetyllactosamine is the most prevalent disaccharide moiety in the glycans on the surface of mammalian cells and often found as repeat units in the linear and branched polylactosamines, known as i- and I-antigen, respectively. The β1-4-galactosyltransferase-I (β4Gal-T1) enzyme is responsible for the synthesis of the N-acetyllactosamine moiety. To understand its oligosaccharide acceptor specificity, we have previously investigated the binding of tri- and pentasaccharides of N-glycan with a GlcNAc at their nonreducing end and found that the extended sugar moiety in these acceptor substrates binds to the crevice present at the acceptor substrate binding site of the β4Gal-T1 molecule.

View Article and Find Full Text PDF

Background: Alpha-lactalbumin (α-LA) is a calcium-bound mammary gland-specific protein that is found in milk. This protein is a modulator of β1,4-galactosyltransferase enzyme, changing its acceptor specificity from N-acetyl-glucosamine to glucose, to produce lactose, milk's main carbohydrate. When calcium is removed from α-LA, it adopts a molten globule form, and this form, interestingly, when complexed with oleic acid (OA) acquires tumoricidal activity.

View Article and Find Full Text PDF

In recent years, sugars with a unique chemical handle have been used to detect and elucidate the function of glycoconjugates. Such chemical handles have generally been part of an N-acetyl moiety of a sugar. We have previously developed several applications using the single mutant Y289L-β1,4-galactosyltransferase I (Y289L-β4Gal-T1) and the wild-type polypeptide-α-GalNAc-T enzymes with UDP-C2-keto-Gal.

View Article and Find Full Text PDF

This chapter presents a technique that employs mutant glycosyltransferase enzymes for the site-specific bioconjugation of biomolecules via a glycan moiety to facilitate the development of a targeted drug delivery system. The target specificity of this methodology is based on unique sugar residues that are present on glycoproteins or engineered glycopeptides. The glycosyltransferases used in this approach have been manipulated in a way that confers the ability to transfer a modified sugar residue with a chemical handle to a sugar moiety of the glycoprotein or to a polypeptide tag of an engineered nonglycoprotein.

View Article and Find Full Text PDF