Laser-plasma accelerators (LPAs) can deliver pico- to nanosecond long proton bunches with ≳100 nC of charge dispersed over a broad energy spectrum. Increasing the repetition rates of today's LPAs is a necessity for their practical application. This, however, creates a need for real-time proton bunch diagnostics.
View Article and Find Full Text PDFTheevolution of radiotherapy necessitates innovative platforms for preclinical investigation, bridging the gap between bench research and clinical applications. Understanding the nuances of radiation response, specifically tailored to proton and photon therapies, is critical for optimizing treatment outcomes. Within this context, preclinicalexperimental setups incorporating image guidance for both photon and proton therapies are pivotal, enabling the translation of findings from small animal models to clinical settings.
View Article and Find Full Text PDFPurpose: A better characterization of the dependence of the tissue sparing effect at ultra-high dose rate (UHDR) on physical beam parameters (dose, dose rate, radiation quality) would be helpful towards a mechanistic understanding of the FLASH effect and for its broader clinical translation. To address this, a comprehensive study on the normal tissue sparing at UHDR using the zebrafish embryo (ZFE) model was conducted.
Methods: One-day-old ZFE were irradiated over a wide dose range (15-95 Gy) in three different beams (proton entrance channel, proton spread out Bragg peak and 30 MeV electrons) at UHDR and reference dose rate.
The recently observed FLASH effect describes the observation of normal tissue protection by ultra-high dose rates (UHDR), or dose delivery in a fraction of a second, at similar tumor-killing efficacy of conventional dose delivery and promises great benefits for radiotherapy patients. Dedicated studies are now necessary to define a robust set of dose application parameters for FLASH radiotherapy and to identify underlying mechanisms. These studies require particle accelerators with variable temporal dose application characteristics for numerous radiation qualities, equipped for preclinical radiobiological research.
View Article and Find Full Text PDF