Identification of the sex of modern, fossil and archaeological animal remains offers many insights into their demography, mortality profiles and domestication pathways. However, due to many-factors, sex determination of osteological remains is often problematic. To overcome this, we have developed an innovative protocol to determine an animal's sex from tooth enamel, by applying label-free quantification (LFQ) of two unique AmelY peptides 'LRYPYP' (AmelY;[M+2] 404.
View Article and Find Full Text PDFReconstructing the absolute chronology of Jerusalem during the time it served as the Judahite Kingdom's capital is challenging due to its dense, still inhabited urban nature and the plateau shape of the radiocarbon calibration curve during part of this period. We present 103 radiocarbon dates from reliable archaeological contexts in five excavation areas of Iron Age Jerusalem, which tie between archaeology and biblical history. We exploit Jerusalem's rich past, including textual evidence and vast archaeological remains, to overcome difficult problems in radiocarbon dating, including establishing a detailed chronology within the long-calibrated ranges of the Hallstatt Plateau and recognizing short-lived regional offsets in atmospheric C concentrations.
View Article and Find Full Text PDFSpatial and temporal variations in the atmospheric bomb radiocarbon make it a very useful tracer and a dating tool. With the introduction of more atmospheric bomb radiocarbon records, the spatial and temporal changes in bomb radiocarbon are becoming clearer. Bomb radiocarbon record from a pine tree in the northern Israel region shows that the ΔC level in the region is closer to the northern hemisphere zone (NH) 1 as compared to the northern hemisphere zone (NH) 2.
View Article and Find Full Text PDFAnthropogenic calcite is a form of calcium carbonate produced through pyrotechnological activities, and it is the main component of materials such as lime binders and wood ash. This type of calcite is characterized by a significantly lower degree of crystallinity compared with its geogenic counterparts, as a result of different formation processes. The crystallinity of calcite can be determined using infrared spectroscopy in transmission mode, which allows decoupling particle size effect from atomic order and thus effectively distinguish anthropogenic and geogenic calcites.
View Article and Find Full Text PDFWe report on the 3D ultrastructure of the mineralized petrous bone of mature pig using focused ion beam - scanning electron microscopy (FIB-SEM). We divide the petrous bone into two zones based on the degree of mineralization; one zone close to the otic chamber has higher mineral density than the second zone further away from the otic chamber. The hypermineralization of the petrous bone results in the collagen D-banding being poorly revealed in the lower mineral density zone (LMD), and absent in the high mineral density zone (HMD).
View Article and Find Full Text PDF