Publications by authors named "E Blankman"

Formation of robust actomyosin stress fibers (SF) in response to cell stretch plays a key role in the transfer of information from the cytoplasm into the nucleus. Actin/LINC/Lamin (ALL) nuclear lines provide mechanical linkage between the actin cytoskeleton and the lamin nucleoskeleton across the nuclear envelope. To understand the establishment of ALL lines, we used live cell imaging of cells exposed to cyclic stretch.

View Article and Find Full Text PDF

Mechanical signals transmitted through the cytoplasmic actin cytoskeleton must be relayed to the nucleus to control gene expression. LIM domains are protein-protein interaction modules found in cytoskeletal proteins and transcriptional regulators. Here, we identify three LIM protein families (zyxin, paxillin, and FHL) whose members preferentially localize to the actin cytoskeleton in mechanically stimulated cells through their tandem LIM domains.

View Article and Find Full Text PDF

Mechanical stimulation of fibroblasts induces changes in the actin cytoskeleton including stress fiber (SF) reinforcement and realignment. Here we characterize the nuclear response to mechanical stimulation (uniaxial cyclic stretch). Using fluorescence microscopy and quantitative image analysis we find that stretch-induced nuclear elongation and alignment perpendicular to the stretch vector are dependent on formin-regulated actin polymerization.

View Article and Find Full Text PDF

Objective: To assess the accuracy of pulse oximetry screening for critical congenital heart defects (CCHDs) in a setting with home births and early discharge after hospital deliveries, by using an adapted protocol fitting the work patterns of community midwives.

Study Design: Pre- and postductal oxygen saturations (SpO) were measured ≥1 hour after birth and on day 2 or 3. Screenings were positive if the SpO measurement was <90% or if 2 independent measures of pre- and postductal SpO were <95% and/or the pre-/postductal difference was >3%.

View Article and Find Full Text PDF

Bronchospasm induced in non-asthmatic human subjects can be easily reversed by a deep inspiration (DI) whereas bronchospasm that occurs spontaneously in asthmatic subjects cannot. This physiological effect of a DI has been attributed to the manner in which a DI causes airway smooth muscle (ASM) cells to stretch, but underlying molecular mechanisms-and their failure in asthma-remain obscure. Using cells and tissues from wild type and zyxin-/- mice we report responses to a transient stretch of physiologic magnitude and duration.

View Article and Find Full Text PDF