Purpose: Aortic dissection is associated with a high mortality rate. Although computational approaches have shed light on many aspects of the disease, a sensitivity analysis is required to determine the significance of different factors. Because of its complex geometry and high computational expense, the three-dimensional (3D) fluid-structure interaction (FSI) simulation is not a suitable approach for sensitivity analysis.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
June 2022
The computational cost of a three-dimensional (3D) fluid-structure interaction (FSI) simulation of a dissected aorta has prevented researchers from investigating the effect of a wide range of the heart rate on the hemodynamic quantities in the disease. We have presented a systematic procedure to develop a zero-dimensional (0D) model for a dissected aorta. A series of numerical experiments were used to calculate the values for the resistance, inertance, and compliance of each lumen with irregular geometries.
View Article and Find Full Text PDFAortic dissection (AD) is one of the most catastrophic cardiovascular diseases. AD occurs when a layer inside the aorta is disrupted and gives rise to the formation of a true lumen and a false lumen. These lumens can be connected through tears in the intimal flap which are known as entries.
View Article and Find Full Text PDFCardiovascular disease is a chronic disease that leads to impaired cardiac function and requires long-term management to control its progression. Despite the importance of hydrogels for therapeutic applications, a contradiction between the size of a hydrogel and the amount of loaded drug has been encountered when using conventional fabrication methods. In this study, biocompatible reservoir microcapsules (diameter ∼100 μm) with a large liquid core and polymeric shell were fabricated via a one-step phase separation of poly(ethylene glycol)diacrylate (PEGDA) and dextran within pre-gel droplets through microfluidics.
View Article and Find Full Text PDFPhage display technology is a common approach for discovery of therapeutic antibodies. Drug candidates are typically isolated in two steps: First, a pool of antibodies is enriched through consecutive rounds of selection on a target antigen, and then individual clones are characterized in a screening procedure. When whole cells are used as targets, as in phenotypic discovery, the output phage pool typically contains thousands of antibodies, binding, in theory, hundreds of different cell surface receptors.
View Article and Find Full Text PDF