Publications by authors named "E Benichou"

Second harmonic generation (SHG) is a nonlinear optical phenomenon where two photons at the frequency ω combine to form a single photon at the second-harmonic frequency 2ω. Since that second-order process is very weak in bulk isotropic media, optical SHG responses of interfaces provide a powerful and versatile technique to probe the molecular structure and dynamics of liquid interfaces. Both local dipole contributions and non-local quadrupole contributions can be interesting to investigate different properties of the interface, such as the molecular orientation or the charge density.

View Article and Find Full Text PDF

Quantum mechanical/molecular mechanics (QM/MM) methods are interesting to model the impact of a complex environment on the spectroscopic properties of a molecule. In this context, a FROm molecular dynamics to second harmonic Generation (FROG) code is a tool to exploit molecular dynamics trajectories to perform QM/MM calculations of molecular optical properties. FROG stands for "FROm molecular dynamics to second harmonic Generation" since it was developed for the calculations of hyperpolarizabilities.

View Article and Find Full Text PDF

Cancer cells integrate multiple biosynthetic demands to drive unrestricted proliferation. How these cellular processes crosstalk to fuel cancer cell growth is still not fully understood. Here, we uncover the mechanisms by which the transcription factor Carbohydrate responsive element binding protein (ChREBP) functions as an oncogene during hepatocellular carcinoma (HCC) development.

View Article and Find Full Text PDF

Second harmonic scattering (SHS) is a method of choice to investigate the molecular structure of liquids. While a clear interpretation of SHS intensity exists for diluted solutions of dyes, the scattering due to solvents remains difficult to interpret quantitatively. Here, we report a quantum mechanics/molecular mechanics (QM/MM) approach to model the polarization-resolved SHS intensity of liquid water, quantifying different contributions to the signal.

View Article and Find Full Text PDF

The molecular first hyperpolarizability contributes to second-order optical non-linear signals collected from molecular liquids. For the Second Harmonic Generation (SHG) response, the first hyperpolarizability (2, , ) often depends on the molecular electrostatic environment. This is especially true for water, due to its large second hyperpolarizability (2, , ,0).

View Article and Find Full Text PDF