Publications by authors named "E Benecchi"

Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies.

View Article and Find Full Text PDF

Paracrine factors secreted by oocytes and somatic cells regulate many important aspects of early ovarian follicle development in mammals. From activation of dormant primordial follicles to selection of secondary follicles, locally acting factors have been identified that appear to exert important effects on the growth and differentiation of oocytes and granulosa cells. This article summarizes evidence to support a model for bi-directional paracrine communication that is based on developmental regulation of the delivery and reception of paracrine factors at the oocyte-granulosa cell interface.

View Article and Find Full Text PDF

We identified a 'semicircular' compartment of the rat thyropharyngeus muscle at the pharyngoesophageal junction and used the glycogen depletion method to determine how the fibers of this muscle (as well as all others of the pharynx and larynx) are innervated by different cranial nerve branches. The semicircular compartment appears anatomically homologous to the human cricopharyngeus muscle, an important component of the upper esophageal sphincter. While we found very little overlap in the muscle targets of the pharyngeal, superior laryngeal and recurrent laryngeal nerves within the pharynx and larynx, the semicircular muscle receives a dual, interdigitating innervation from two vagal branches: the pharyngeal nerve and a branch of the superior laryngeal nerve we call the dorsal accessory branch.

View Article and Find Full Text PDF

An in vitro study was conducted into the speed of glycolysis is human erythrocytes. Incubation with Buflomedil does not change the speed of glycolysis.

View Article and Find Full Text PDF