We describe the next-generation system for in situ characterization of a complex oxide thin film and heterostructure growth by pulsed laser deposition (PLD) using synchrotron hard X-rays. The system consists of a PLD chamber mounted on a diffractometer allowing both real-time surface X-ray diffraction (SXRD) and in situ hard X-ray photoelectron spectroscopy (HAXPES). HAXPES is performed in the incident X-ray energy range from 4 to 12 keV using a Scienta EW4000 electron energy analyzer mounted on the PLD chamber fixed parallel with the surface normal.
View Article and Find Full Text PDFMicrobial communities in human milk and those in feces from breastfed infants vary within and across populations. However, few researchers have conducted cross-cultural comparisons between populations, and little is known about whether certain "core" taxa occur normally within or between populations and whether variation in milk microbiome is related to variation in infant fecal microbiome. The purpose of this study was to describe microbiomes of milk produced by relatively healthy women living at diverse international sites and compare these to the fecal microbiomes of their relatively healthy infants.
View Article and Find Full Text PDFA portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described.
View Article and Find Full Text PDFWe present an in situ Radiated Materials (iRadMat) experimental module designed to interface with a servo-hydraulic load frame for X-ray measurements at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermo-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. The iRadMat is a radiation-shielded vacuum heating system with the sample rotation-under-load capability.
View Article and Find Full Text PDF