We investigate a stochastic process where a rectangle breaks into smaller rectangles through a series of horizontal and vertical fragmentation events. We focus on the case where both the vertical size and the horizontal size of a rectangle are discrete variables. Because of this constraint, the system reaches a jammed state where all rectangles are sticks, that is, rectangles with minimal width.
View Article and Find Full Text PDFWe study diffusion-controlled two-species annihilation with a finite number of particles. In this stochastic process, particles move diffusively, and when two particles of opposite type come into contact, the two annihilate. We focus on the behavior in three spatial dimensions and for initial conditions where particles are confined to a compact domain.
View Article and Find Full Text PDFWe investigate statistical properties of trails formed by a random process incorporating aggregation, fragmentation, and diffusion. In this stochastic process, which takes place in one spatial dimension, two neighboring trails may combine to form a larger one, and also one trail may split into two. In addition, trails move diffusively.
View Article and Find Full Text PDF