The common bean (Phaseolus vulgaris L.) is a crucial legume crop and an ideal evolutionary model to study adaptive diversity in wild and domesticated populations. Here, we present a common bean pan-genome based on five high-quality genomes and whole-genome reads representing 339 genotypes.
View Article and Find Full Text PDFThe domestication of crops, coupled with agroecosystem development, is associated with major environmental changes and provides an ideal model of phenotypic plasticity. Here, we examined 32 genotypes of three tetraploid wheat (Triticum turgidum L.) subspecies, wild emmer, emmer, and durum wheat, which are representative of the key stages in the domestication of tetraploid wheat.
View Article and Find Full Text PDFIn an intercropping system, the interplay between cereals and legumes, which is strongly driven by the complementarity of below-ground structures and their interactions with the soil microbiome, raises a fundamental query: Can different genotypes alter the configuration of the rhizosphere microbial communities? To address this issue, we conducted a field study, probing the effects of intercropping and diverse maize ( L.) and bean ( L., L.
View Article and Find Full Text PDFPaleogenomics focuses on the recovery, manipulation, and analysis of ancient DNA (aDNA) from historical or long-dead organisms to reconstruct and analyze their genomes. The aDNA is commonly obtained from remains found in paleontological and archaeological sites, conserved in museums, and in other archival collections. collections represent a great source of phenotypic and genotypic information, and their exploitation has allowed for inference and clarification of previously unsolved taxonomic and systematic relationships.
View Article and Find Full Text PDF